设函数的图象在点
处的切线的斜
率为,且函数
为偶函数.若函数
满足下列条件:①
;
②对一切实数,不等式
恒成立.
(1)求函数的表达式;
(2)求证:.
在DABC中,角A、B、C的对边分别为a、b、c,且角A、B都是锐角,a=6,b=5,.
(1) 求和
的值;
(2) 设函数,求
的值.
设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.
设双曲线C:(a>0,b>0)的一个焦点坐标为(
,0),离心率
, A、B是双曲线上的两点,AB的中点M(1,2).
(1)求双曲线C的方程;
(2)求直线AB方程;
(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
已知数列的前n项和为
,且满足
,
.
(1)求数列的通项公式
;
(2)设为数列{
}的前n项和,求
;
(3)设,证明:
.
如图,在直三棱柱中,D、E分别是BC和
的中点,已知AB=AC=AA1=4,ÐBAC=90°.
(1)求证:⊥平面
;
(2)求二面角的余弦值;
(3)求三棱锥的体积.