如图,在平面直角坐标系中,O为坐标原点.A.B两点的坐标分别为A(m,0)、B(0,n),且,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.
(1)求m、n的值与OA、OB的长;
(2)连接PB,若△POB的面积不大于3且不等于0,则t的取值范围是 (请直接写出答案).
(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.
在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).
(1)当k=-2时,求反比例函数的解析式;
(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围.
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式.
快乐公司决定按扇形图给出的比例从甲、乙、丙三个工厂共购买200件同种产品A,已知这三个工厂生产的产品A的优品概率如表所示.
甲 |
乙 |
丙 |
|
优品概率 |
80% |
85% |
90% |
(1)求快乐公司从丙厂应购买多少件产品A;
(2)求快乐公司所购买的200件产品A的优品概率;
(3)你认为快乐公司能否通过调整从三个工厂所购买的产品A的比例,使所购买的200件产品A的优品概率上升3%?若能,请问应从甲厂购买多少件产品A;若不能,请说明理由.
体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.
(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);
(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.
某市从2010年开始加快保障房建设进程,现统计了该市2010年到2014年3月新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.
(1)小明看了统计图后说:“该市2013年新建保障房的套数比2012年少了.”你认为小明说法正确吗?请说明理由;
(2)求补全条形统计图;
(3)求这5年每年新建保障房的套数的中位数.