已知双曲线
的焦距为
,其一条渐近线的倾斜角为
,且
,以双曲线
的实轴为长轴,虚轴为短轴的椭圆为
.
(1)求椭圆
的方程;
(2)设点
是椭圆
的左顶点,
为椭圆
上异于点
的两动点,若直线
的斜率之积为
,问直线
是否恒过定点?若横过定点,求出该点坐标;若不横过定点,说明理由.
已知
为实数,
.
(1)若
,求
在
上的最大值和最小值;
(2)若
在
和
上都是递增的,求
的取值范围.
直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为
,直线
方程为
(t为参数),直线
与C的公共点为T.
(1)求点T的极坐标;
(2)过点T作直线
,
被曲线C截得的线段长为2,求直线
的极坐标方程.
设命题
:实数
满足
,其中
;命题
:实数
满足
且
的必要不充分条件,求实数
的取值范围.
已知圆心为
的圆经过点
.
(1)求圆
的标准方程;
(2)若直线
过点
且被圆
截得的线段长为
,求直线
的方程;
(3)是否存在斜率是1的直线
,使得以
被圆
所截得的弦EF为直径的圆经过
原点?若存在,试求出直线
的方程;若不存在,请说明理由.
如图,在四棱锥
中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的 中点.
(1)求证:
平面
;
(2)求证:
;
(3)若
是线段
上一动点,试确定
点位置,
使
平面
,并证明你的结论.