游客
题文

将下列各数用“<”连接起来:

科目 数学   题型 解答题   难度 中等
知识点: 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系 xOy 中,抛物线 y = x 2 + 1 4 y 轴相交于点 A ,点 B 与点 O 关于点 A 对称

(1)填空:点 B 的坐标是  

(2)过点 B 的直线 y = kx + b (其中 k < 0 ) x 轴相交于点 C ,过点 C 作直线 l 平行于 y 轴, P 是直线 l 上一点,且 PB = PC ,求线段 PB 的长(用含 k 的式子表示),并判断点 P 是否在抛物线上,说明理由;

(3)在(2)的条件下,若点 C 关于直线 BP 的对称点 C ' 恰好落在该抛物线的对称轴上,求此时点 P 的坐标.

阅读下面材料:

小明遇到这样一个问题:如图1, ΔABC 中, AB = AC ,点 D BC 边上, DAB = ABD BE AD ,垂足为 E ,求证: BC = 2 AE

小明经探究发现,过点 A AF BC ,垂足为 F ,得到 AFB = BEA ,从而可证 ΔABF ΔBAE (如图 2 ) ,使问题得到解决.

(1)根据阅读材料回答: ΔABF ΔBAE 全等的条件是  (填“ SSS ”、“ SAS ”、“ ASA ”、“ AAS ”或“ HL ”中的一个)

参考小明思考问题的方法,解答下列问题:

(2)如图3, ΔABC 中, AB = AC BAC = 90 ° D BC 的中点, E DC 的中点,点 F AC 的延长线上,且 CDF = EAC ,若 CF = 2 ,求 AB 的长;

(3)如图4, ΔABC 中, AB = AC BAC = 120 ° ,点 D E 分别在 AB AC 边上,且 AD = kDB (其中 0 < k < 3 3 ) AED = BCD ,求 AE EC 的值(用含 k 的式子表示).

如图1, ΔABC 中, C = 90 ° ,线段 DE 在射线 BC 上,且 DE = AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D DF = DB ,与射线 BA 相交于点 F ,过点 E BC 的垂线,与射线 BA 相交于点 G .设 BD = x ,四边形 DEGF ΔABC 重叠部分的面积为 S S 关于 x 的函数图象如图2所示(其中 0 < x 1 1 < x m m < x 3 时,函数的解析式不同)

(1)填空: BC 的长是  

(2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.

如图, AB O 的直径,点 C D O 上, A = 2 BCD ,点 E AB 的延长线上, AED = ABC

(1)求证: DE O 相切;

(2)若 BF = 2 DF = 10 ,求 O 的半径.

如图,抛物线 y = x 2 3 x + 5 4 x 轴相交于 A B 两点,与 y 轴相交于点 C ,点 D 是直线 BC 下方抛物线上一点,过点 D y 轴的平行线,与直线 BC 相交于点 E

(1)求直线 BC 的解析式;

(2)当线段 DE 的长度最大时,求点 D 的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号