从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表
如下:
分组(重量) |
![]() |
![]() |
![]() |
![]() |
频数(个) |
5 |
10 |
20 |
15 |
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在和
的苹果中共抽取4个,其中重量在
的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在和
中各有1个的概率.
(本题满分12分) 已知a,b都是正实数,且,求证:
(本题满分12分)某皮制厂去年生产皮质小包的年产量为10万件,每件皮质小包的销售价格平均为100元,生产成本为80元.从今年起工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本,预计产量每年递增1万件.设第年每件小包的生产成本
元,若皮制产品的销售价格不变,第
年的年利润为
万元(今年为第一年).
(Ⅰ)求的表达式
(Ⅱ)问从今年算起第几年的利润最高?最高利润为多少万元?
(本题满分13分)已知函数.
(Ⅰ) 求函数的最小值和最小正周期;
(Ⅱ)已知内角
的对边分别为
,且
,若向量
与
共线,求
的值.
(本题满分12分)已知两个向量,
,其中
,且满足
.
(Ⅰ)求的值;(Ⅱ)求
的值.
(本题满分12分)已知函数在定义域
上是奇函数,又是减函数。
(Ⅰ)证明:对任意的,有
(Ⅱ)解不等式。