从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表
如下:
分组(重量) |
![]() |
![]() |
![]() |
![]() |
频数(个) |
5 |
10 |
20 |
15 |
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在和
的苹果中共抽取4个,其中重量在
的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在和
中各有1个的概率.
(本小题满分14 分)设,
分别为椭圆
:
的左、右焦点,点
为椭圆
的左顶点,点
为椭圆
的上顶点,且
.
(1)若椭圆的离心率为
,求椭圆
的方程;
(2)设为椭圆
上一点,且在第一象限内,直线
与
轴相交于点
,若以
为
直径的圆经过点,证明:
(本小题满分13分)已知函数,其中
.
(1)当时,求
的单调区间;
(2)当时,证明:存在实数
,使得对于任意的实数
,都有
成立.
(本小题满分14 分)如图1,在边长为4的菱形中,
,
于点
,将
沿
折起到
的位置,使
,如图 2.
(1)求证:平面
;
(2)求二面角的余弦值;
(3)判断在线段上是否存在一点
,使平面
平面
?若存在,求出
的值;若不存在,说明理由.
(本小题满分13 分)某厂商调查甲、乙两种不同型号电视机在10 个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.
为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)当时,记甲型号电视机的“星级卖场”数量为
,乙型号电视机的“星级卖场”数量为
,比较
,
的大小关系;
(2)在这10 个卖场中,随机选取2 个卖场,记为其中甲型号电视机的“星级卖场”的个数,求
的分布列和数学期望;
(3)若,记乙型号电视机销售量的方差为
,根据茎叶图推断
为何值时,
达到最小值.(只需写出结论)
(本小题满分13分)在锐角中,角
,
,
所对的边分别为
,
,
,已知
,
,
.
(1)求角的大小;
(2)求的面积.