设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,2bn–b1=S1•Sn,n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设,求数列{cn}的前n项和Tn;
(Ⅲ)证明:对任意n∈N*且n≥2,有+
+…+
<
.
(本小题满分12分)已知点M在椭圆上,以M为圆心的圆与x轴相切于椭圆的右焦点F.
(Ⅰ)若圆M与y轴相切,求椭圆的离心率;
(Ⅱ)若圆M与y轴相交于A,B两点,且是边长为2的正三角形,求椭圆的方程.
(本小题满分12分)如图,多面体ABCDEF中,底面ABCD是菱形,,四边形BDEF是正方形,且
平面ABCD.
(Ⅰ)求证:平面AED;
(Ⅱ)若,求多面体ABCDEF的体积V.
(本小题满分12分)已知函数.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)求函数的极值.
(本小题满分12分)已知是斜三角形,内角A、B、C所对的边的长分别为a、b、c,若
.
(Ⅰ)求角C;
(Ⅱ)若,且
,求
的面积.
(本小题满分10分)选修4-5:不等式选讲
已知函数.
(Ⅰ)解不等式;
(Ⅱ)若存在实数x,使得,求实数a的取值范围.