已知函数
.
(Ⅰ)当
时,求
在区间
上的最大值;
(Ⅱ)若在区间(1, +∞)上,函数
的图象恒在直线
下方,求
的取值范围.
如图,平面
平面
,四边形
为矩形,
.
为
的中点,
.
(1)求证:
;
(2)若
时,求二面角
的余弦值.
我国政府对PM2.5采用如下标准:
| PM2.5日均值m(微克/立方米) |
空气质量等级 |
![]() |
一级 |
![]() |
二级 |
![]() |
超标 |
某市环保局从180天的市区PM2.5监测数据中,随机抽取l0天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(1)求这10天数据的中位数.
(2)从这l0天的数据中任取3天的数据,记
表示空气质量达到一级的天数,求
的分布列;
(3)以这10天的PM2.5日均值来估计这180天的空气质量情况,其中大约有多少天的空气质量达到一级.
某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入的部分数据如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)请求出上表中的
,并直接写出函数
的解析式;
(2)将
的图象沿
轴向右平移
个单位得到函数
,若函数
在
(其中
)上的值域为
,且此时其图象的最高点和最低点分别为
,求
与
夹角
的大小。
已知:0<a<b<c<d 且a+d=b+c,求证:
< 
某地最近十年粮食需求量逐年上升,下表是部分统计数据:
| 年份 |
2004 |
2006 |
2008 |
2010 |
2012 |
| 需求量(万吨) |
236 |
246 |
257 |
276 |
286 |
(1)利用所给数据求年需求量与年份之间的回归直线方程
=
x+
(2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.