某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下.(单位:km)
第一次 |
第二次 |
第三次 |
第四次 |
第五次 |
第六次 |
第七次 |
-4 |
+7 |
-9 |
+10 |
+6 |
-5 |
-6 |
(1)求收工时,检修小组在A地的哪个方向?距离A地多远?
(2)在第几次记录时距A地最近?
(3)若汽车行驶每千米耗油0.2升,问从A地出发,检修结束后再回到A地共耗油多少升?
五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB长为半径的圆弧AC与边DE相切于点F,连接BE,BD.
(1)如图1,求∠EBD的度数;
(2)如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC的值.
如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°.
(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法);
(2)在(1)所作的图形中,求与
的面积之比.
如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动。
(1)当B与O重合的时候,求三角板运动的时间;
(2)如图2,当AC与半圆相切时,求AD;
(3)如图3,当AB和DE重合时,求证:=CG·CE.
⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG, CP,PB.
(1)如1图;若D是线段OP的中点,求∠BAC的度数;
(2)如2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;
(3)如3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.
如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE= .