小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系,
轴在地平面上的球场中轴线上,
轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程
表示的曲线上,其中
与发射方向有关.发射器的射程是指网球落地点的横坐标.
(1)求发射器的最大射程;
(2)请计算在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标
最大为多少?并请说明理由.
已知椭圆的离心率为
,其中左焦点
(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
已知圆:
,直线
被圆所截得的弦的中点为P(5,3).(1)求直线
的方程;(2)若直线
:
与圆
相交于两个不同的点,求b的取值范围.
已知在
处有极值,其图象在
处的切线与直线
平行.
(1)求函数的单调区间;
(2)若时,
恒成立,求实数
的取值范围。
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过
,设点
.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段
中点
的轨迹方程。
(本小题满分8分) 某车间生产某机器的两种配件A和B,生产配件A成本费y与该车间的工人人数x成反比,而生产配件B成本费y
与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这两项费用y
和y
分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少?