游客
题文

为了更好的了解某校高三学生期中考试的数学成绩情况,从所有高三学生中抽取40名学生,将他们的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.

(1)若该校高三年级有1800人,试估计这次考试的数学成绩不低于60分的人数及60分以上的学生的平均分;
(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取两名学生,求这两名学生成绩之差的绝对值不大于10的概率

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设函数
(1)求函数的最小正周期和单调递减区间;
(2)若,是否存在实数m,使函数的值域恰为?若存在,请求出m的
取值;若不存在,请说明理由。

知不等式的解集为A,函数的定义域为B.
(Ⅰ)若,求的取值范围;
(Ⅱ)证明:函数的图象关于原点对称。

(本题13分)
已知f(x)=lnx+x2-bx.
(1)若函数f(x)在其定义域内是增函数,求b的取值范围;
(2)当b=-1时,设g(x)=f(x)-2x2,求证函数g(x)只有一个零点.

(本小题满分13分) 2010年11月在广州召开亚运会,某小商品公司开发一种亚运会纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明:如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x2,记改进工艺后,该公司销售纪念品的月平均利润是y(元).
(1)写出y与x的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使该公司销售该纪念品的月平均利润最大.

(本题13分)
向量=(+1,),=(1,4cos(x+)),设函数 (∈R,且为常数).
(1)若为任意实数,求的最小正周期;
(2)若在[0,)上的最大值与最小值之和为7,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号