已知定义在上的函数f(x)同时满足下列三个条件:
①f(3)=﹣1;②对任意x、y∈都有f(xy)=f(x)+f(y);③x>1时,f(x)<0.
(1)求f(9)、的值;
(2)证明:函数f(x)在上为减函数;
(3)解关于x的不等式f(6x)<f(x﹣1)﹣2.
(本小题满分12分)已知f(x)=。
(1)曲线在点(1,f(1))处的切线斜率为0,求f(x)的单调区间;
(2)若f(x)<x2在(1,+)恒成立,求a的取值范围。
(本小题满分12分)已知椭圆C:的离心率为
,连接椭圆四个顶点形成的四边形面积为4
.
(1)求椭圆C的标准方程;
(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且O为坐标原点,当
时,求t的取值范围.
(本小题满分12分)如图,在三棱锥S -ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=,M为AB的中点.
(1)证明:AC⊥SB;
(2)求点B到平面SCM的距离。
(本小题满分12分)某校为了解高三年级不同性别的学生对取消艺术课的态度(支持或反对),进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为,通过对被抽取学生的问卷调查,得到如下2x2列联表:
(1)完成列联表,并判断能否有99.9%的把握认为态度与性别有关?
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
(本小题满分12分)已知数列的首项al=1,
.
(1)证明:数列是等比数列;
(2)设,求数列
的前n项和
.