如图1是立方体和长方体模型,立方体棱长和长方体底面各边长都为1,长方体侧棱长为2,现用60张长为6,宽为4的长方形卡纸,剪出这两种模型的表面展开图,有两种方法:
方法一:如图2,每张卡纸剪出3个立方体表面展开图;
方法二:如图3,每张卡纸剪出2个长方体表面展开图(图中只画出1个).
设用x张卡纸做立方体,其余卡纸做长方体,共做两种模型y个.要求制作的长方体的个数不超过立方体的个数.
(1)在图3中画出第二个长方体表面展开图,用阴影表示;
(2)请你写出y关于x的函数解析式,并注明自变量x的取值范围;
(3)设每只模型(包括立方体和长方体)平均获利为w(元),w满足函数,
若想将模型作为教具卖出获得最大利润,则应该制作立方体和长方体各多少个?最大利润是多少?
在平面直角坐标系中,现将一块等腰直角三角形ABC放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示;抛物线经过点B。
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使ΔACP仍然是以AC为直角边的等腰直角三角形?若存在,求所以点P的坐标;若不存在,请说明理由。
某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数(亩)与补贴数额
(元)之间大致满足如图1所示的一次函数关系.随着补贴数额
的不断增大,出口量也不断增加,但每亩蔬菜的收益
(元)会相应降低,且
与
之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数和每亩蔬菜的收益
与政府补贴数额
之间的函数关系式;
(3)要使全市这种蔬菜的总收益(元)最大,政府应将每亩补贴数额
定为多少?并求出总收益
的最大值.
如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
已知关于x的方程x2-2(k-1)x+ k2=0有两个实数根
(1)求k的取值范围;
(2)若,求k的值.
在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数的图象上的概率;
(3)求小明、小华各取一次小球所确定的数x、y满足的概率.