游客
题文

对x,y定义一种新运算T,规定:(其中均为非零常数),这里等式右边是通常的四则运算,例如:
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求的值;
②若关于的方程T有实数解,求实数的值;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则应满足怎样的关系式?

科目 数学   题型 解答题   难度 较难
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

如图,矩形 ABCD 中, AB=8 AD=6 ,点 O 是对角线 BD 的中点,过点 O 的直线分别交 AB CD 边于点 E F

(1)求证:四边形 DEBF 是平行四边形;

(2)当 DE=DF 时,求 EF 的长.

先化简,再从 - 1 、2、3、4中选一个合适的数作为 x 的值代入求值.

( x 2 - 2 x x 2 - 4 x + 4 - 4 x - 2 ) ÷ x - 4 x 2 - 4

已知二次函数 y = a x 2 + bx + c ( a > 0 )

(1)若 a = 1 b = - 2 c = - 1

①求该二次函数图象的顶点坐标;

②定义:对于二次函数 y = p x 2 + qx + r ( p 0 ) ,满足方程 y = x x 的值叫做该二次函数的"不动点".求证:二次函数 y = a x 2 + bx + c 有两个不同的"不动点".

(2)设 b = 1 2 c 3 ,如图所示,在平面直角坐标系 Oxy 中,二次函数 y = a x 2 + bx + c 的图象与 x 轴分别相交于不同的两点 A ( x 1 0 ) B ( x 2 0 ) ,其中 x 1 < 0 x 2 > 0 ,与 y 轴相交于点 C ,连结 BC ,点 D y 轴的正半轴上,且 OC = OD ,又点 E 的坐标为 ( 1 , 0 ) ,过点 D 作垂直于 y 轴的直线与直线 CE 相交于点 F ,满足 AFC = ABC FA 的延长线与 BC 的延长线相交于点 P ,若 PC PA = 5 5 a 2 + 1 ,求二次函数的表达式.

四边形 ABCD O 的圆内接四边形,线段 AB O 的直径,连结 AC BD .点 H 是线段 BD 上的一点,连结 AH CH ,且 ACH = CBD AD = CH BA 的延长线与 CD 的延长线相交于点 P

(1)求证:四边形 ADCH 是平行四边形;

(2)若 AC = BC PB = 5 PD AB + CD = 2 ( 5 + 1 )

①求证: ΔDHC 为等腰直角三角形;

②求 CH 的长度.

如图所示,在平面直角坐标系 Oxy 中,等腰 ΔOAB 的边 OB 与反比例函数 y = m x ( m > 0 ) 的图象相交于点 C ,其中 OB = AB ,点 A x 轴的正半轴上,点 B 的坐标为 ( 2 , 4 ) ,过点 C CH x 轴于点 H

(1)已知一次函数的图象过点 O B ,求该一次函数的表达式;

(2)若点 P 是线段 AB 上的一点,满足 OC = 3 AP ,过点 P PQ x 轴于点 Q ,连结 OP ,记 ΔOPQ 的面积为 S ΔOPQ ,设 AQ = t T = O H 2 - S ΔOPQ

①用 t 表示 T (不需要写出 t 的取值范围);

②当 T 取最小值时,求 m 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号