在平面直角坐标系中,点P到两点
,
的距离之和等于4,设点P的轨迹为
.
(1)写出C的方程;
(2)设直线与C交于A,B两点.k为何值时
?此时
的值是多少?
已知函数.
(I)求函数的最小正周期;
(II)将函数的图象向左平移
个单位,得到函数
的图象.在
中,角A,B,C的对边分别为
,若
,求
的面积.
某省为了研究雾霾天气的治理,一课题组对省内24个城市进行了空气质量的调查,按地域特点把这些城市分成了甲、乙、丙三组.已知三组城市的个数分别为4,8,12,课题组用分层抽样的方法从中抽取6个城市进行空气质量的调查.
(I)求每组中抽取的城市的个数;
(II)从已抽取的6个城市中任抽两个城市,求两个城市不来自同一组的概率.
(本小题满分14分)已知关于x的函数.
(I)求函数在点
处的切线方程;
(II)求函数有极小值,试求a的取值范围;
(III)若在区间上,函数
不出现在直线
的上方,试求a的最大值.
(本小题满分13分)已知椭圆的离心率为
,且过点
.
(I)求椭圆的标准方程;
(II)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,设,满足
.
(i)试证的值为定值,并求出此定值;
(ii)试求四边形ABCD面积的最大值.
(本小题满分12分)已知等比数列的前n项和为
,且满足
.
(I)求p的值及数列的通项公式;
(II)若数列满足
,求数列
的前n项和
.