在直角坐标系中,圆
的参数方程为
(
为参数),以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)设直线的极坐标方程是
,射线
与圆
的交点为
,与直线
的交点为
,求线段
的长.
已知平面直角坐标系,以
为极点,
轴的非负半轴为极轴建立极坐标系,,曲线
的参数方程为
.点
是曲线
上两点,点
的极坐标分别为
.
(1)写出曲线的普通方程和极坐标方程;
(2)求的值.
如图所示,为圆
的切线,
为切点,
,
的角平分线与
和圆
分别交于点
和
.
(1)求证(2)求
的值.
已知抛物线的焦点为
,点
为抛物线上的一点,其纵坐标为
,
.
(1)求抛物线的方程;
(2)设为抛物线上不同于
的两点,且
,过
两点分别作抛物线的切线,记两切线的交点为
,求
的最小值.
已知函数
(1)若是
的极值点,求
的极大值;
(2)求的范围,使得
恒成立.
如图1,在直角梯形中,
,
,
,点
为
中点.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1)在上找一点
,使
平面
;
(2)求点到平面
的距离.