在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,.
(1)若△ABC的面积等于求a与b的值;
(2)若sinB=2sinA,求△ABC的面积.
某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为中任选出两位同学,共同帮助成绩在
中的某一个同学,试列出所有基本事件;若
同学成绩为43分,
同学成绩为95分,求
、
两同学恰好被安排在“二帮一”中同一小组的概率.
分 组 |
频 数 |
频 率 |
[40, 50 ) |
2 |
0.04 |
[ 50, 60 ) |
3 |
0.06 |
[ 60, 70 ) |
14 |
0.28 |
[ 70, 80 ) |
15 |
0.30 |
[ 80, 90 ) |
||
[ 90, 100 ] |
4 |
0.08 |
合 计 |
某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加
万吨,记2011年为第一年,甲、乙两工厂第
年的年产量分别为
万吨和
万吨.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.
已知中,内角
的对边的边长分别为
,且
(I)求角的大小;
(II)若求
的最小值.
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC顶点C的轨迹方程;
(Ⅱ)设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线
的方程.
设函数f(x)=lnx,g(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.