出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-3,+14,-11,+10,-12.
(1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千米?
(2)若汽车耗油量为0.3升/千米,这天下午汽车耗油共多少升?
解下列方程:(1)(x-1)(x+2)=2(x+2)
(2)3x2-9x+2=0
(3)
(4)
计算:5+
-6
×
计算:(1)2+
-4
如图,抛物线y=x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,―4).
(1)求抛物线的解析式;
(2)点Q是线段OB上的动点,过点Q作QE//BC,交AC于点E,连接CQ,设OQ=m,当△CQE的面积最大时,求m的值,并写出点Q的坐标.
(3)若平行于x轴的动直线,与该抛物线交于点P,与直线BC交于点F,D的坐标为(-2,0),则是否存在这样的直线l,使OD=DF?若存在,求出点P的坐标;若不存在,请说明理由.
如图,在ABCD中,AE∶EB=2∶3.
(1)求△AEF和△CDF的周长比;
(2)若S△AEF=8cm2,求S△CDF.