某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的200天内,西红柿的种植成本与上市时间的关系用图1的抛物线弧表示,西红柿市场售价与上市时间的关系用图2的一条线段表示(注:市场售价和种植成本的单位:元/100kg,时间单位:天)
(1)写出图1表示的种植成本与时间的函数关系式,写出图2表示的市场售价与时间的函数关系式
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
中,
是
上的点,
平分
,
面积是
面积的2倍.
(Ⅰ)求;
(Ⅱ)若,
,求
和
的长.
如下图,互相垂直的两条公路、
旁有一矩形花园
,现欲将其扩建成一个更大的三角形花园
,要求点
在射线
上,点
在射线
上,且直线
过点
,其中
米,
米.记三角形花园
的面积为
.
(Ⅰ)问:取何值时,
取得最小值,并求出最小值;
(Ⅱ)若不超过1764平方米,求
长的取值范围.
已知数列的前
项和为
,
,满足
.
(1)计算,猜想
的一个表达式(不需要证明)
(2)设,数列
的前
项和为
,求证:
.
已知分别为
三个内角
的对边,
(1)求
(2)若,
的面积为
;求
.
给定两个命题: P:对任意实数都有
恒成立;Q:关于
的方程
有实数根;如果P与Q中有且仅有一个为真命题,求实数
的取值范围.