已知函数,
.
(1)若函数在点
处的切线方程为
,求
的值;
(2)若函数有三个不同的极值点,求
的值;
(3)若存在实数,使对任意的
,不等式
恒成立,求正整数
的最大值.
(本小题满分12分)甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
.
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投蓝一次命中得3分,未命中得-1分,求乙所得分数的概率分布和数学期望.
(本小题满分12分)在直角坐标平面内,已知点,其中
.
(Ⅰ)若,求角
的弧度数;
(Ⅱ)若,求
的值.
23.(本小题满分10分)
将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为
,正面向上的次数为偶数的概率为
.
(Ⅰ)若该硬币均匀,试求与
;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较
与
的大小.
22.(本小题满分10分)
已知动圆过点
且与直线
相切.
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)过点作一条直线交轨迹
于
两点,轨迹
在
两点处的切线相交于点
,
为线段
的中点,求证:
轴.
(选修4—5:不等式选讲)
求函数最大值.