设函数,函数
,且
,
的图象过点
及
.
(1)求和
的表达式;
(2)求函数的定义域和值域.
在 中, ,再从条件①、条件②这两个条件中选择一个作为己知,求:
(Ⅰ)a的值:
(Ⅱ) 和 的面积.
条件①: ;
条件②: .
注:如果选择条件①和条件②分别解答,按第一个解答计分.
如图,在正方体
中, E为 的中点.
(Ⅰ)求证: 平面 ;
(Ⅱ)求直线 与平面 所成角的正弦值.
已知函数 .
(1)画出 的图像;
(2)求不等式 的解集.
在直角坐标系
中,曲线
的参数方程为
为参数
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)当 时, 是什么曲线?
(2)当 时,求 与 的公共点的直角坐标.
已知A、B分别为椭圆E: (a>1)的左、右顶点,G为E的上顶点, ,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.