如图所示,椭圆与直线
相切于点
.
(1)求满足的关系式,并用
表示点
的坐标;
(2)设是椭圆的右焦点,若
是以
为直角顶点的等腰直角三角形,求椭圆
的标准方程.
在直三棱柱ABC—A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b. (1)设E、F分别为AB1、BC1的中点,求证:EF∥平面ABC;(2)求证:AC⊥AB;(3)求四面体的体积.
已知函数和点
,过点
作曲线
的两条切线
、
,切点分别为
、
.
(1)求证:为关于
的方程
的两根;
(2)设,求函数
的表达式;
(3)在(2)的条件下,若在区间内总存在
个实数
(可以相同),使得不等,则m的最大值,
为正整数
已知圆A:与
轴负半轴交于B点,过B的弦BE与
轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆。(1)求椭圆的方程;(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值。
已知,⑴求
的值;⑵求
的值.
已知函数,数列
满足:
.
(Ⅰ)求证:;
(Ⅱ)求数列的通项公式;
(Ⅲ)求证不等式: