为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为
)进行统计.按照
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
的数据).
(1)求样本容量和频率分布直方图中的
、
的值;
(2)在选取的样本中,从竞赛成绩在分以上(含
分)的学生中随机抽取
名学生参加“中国谜语大会”,求所抽取的
名学生中至少有一人得分在
内的概率.
已知直线的参数方程为
为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为
.
(I)判断直线与圆C的位置关系;
(Ⅱ)若点P(x,y)在圆C上,求x +y的取值范围.
如图,AB是⊙O的直径,C、E为⊙O上的点,CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延长线于D.
(I)求证:DC是⊙O的切线;
(Ⅱ)求证:AF.FB=DE.DA.
已知f(x)=1nx-a(x-l),a∈R
(I)讨论f(x)的单调性;
(Ⅱ)若x≥1时,石恒成立,求实数a的取值范围,
已知抛物线E:y2= 4x,点P(2,O).如图所示,直线.过点P且与抛物线E交于A(xl,y1)、B( x2,y2)两点,直线
过点P且与抛物线E交于C(x3, y3)、D(x4,y4)两点.过点P作x轴的垂线,与线段AC和BD分别交于点M、N.
(I)求y1y2的值;
(Ⅱ)求讧:|PM|="|" PN|
几何体EFG —ABCD的面ABCD,ADGE,DCFG均为矩形,AD=DC=l,AE=。
(I)求证:EF⊥平面GDB;
(Ⅱ)线段DG上是否存在点M使直线BM与平面BEF所成的角为45°,若存在求等¥的值;若不存在,说明理由.