在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,每套盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.
(1)要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?
(2)每套吉祥物降价多少元时,才能使每天的利润最大,最大利润为多少元?
先化简,再求值:,其中
.
解方程:(只需要选择一题解答,多选则以A类题计分)
(A类)
(B类)
(C类)
计算:(1)(-5)-(+1)-(-6);(2)
阅读并解答下列问题:我们熟悉两个乘法公式:①(+b)2=
2+2
b+b2;②(
-b)2=
2-2
b+b2.现将这两个公式变形,可得到一个新的公式③:
b=(
)2-(
)2, 这个公式形似平方差公式,我们不妨称之为广义的平立差公式。灵活、恰当地运用公式③将会使一些数学问题迎刃而解。
例如:因式分解:(b-1)2+(
+b-2)(
+b-2
b)
解:原式=+
-
=(b-1)2+(
+b-
b-1)2-(
b-1)2=(
-1)(b-1)2=(
-1)2(b-1)2你能利用公式(或其他方法)解决下列问题吗?
已知各实数,b,c满足
b=c2+9且
=6-b,求证:
="b"
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个。例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个。
(1)根据题意,完成下表:
车站序号 |
在第x车站启程时邮政车厢邮包总数 |
1 |
n-1 |
2 |
(n-1)-1+(n-2)=2(n-2) |
3 |
2(n-2)-2+(n-3)=3(n-3) |
4 |
|
5 |
|
… |
…… |
n |
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、
n表示)。
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?