已知椭圆C:的离心率与等轴双曲线的离心率互为倒数关系,直线
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA、MB交椭圆于A、B两点,设两直线的斜率分别为k1、k2,且k1+k2=4,证明:直线AB过定点(,-l).
函数f(x)=的定义域为A,函数g(x)=
的定义域为B。
(1)求A;
(2)若BA,求实数a的取值范围。
已知函数,
(1)当时,解不等式
;
(2)若存在,使得
成立,求实数
的取值范围.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数
)与曲线
的极坐标方程为
(1)求直线l与曲线C的普通方程;
(2)设直线l与曲线C相交于A,B两点,证明:0.
如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F. 求证:
(1);
(2)
已知函数f (x)=lnx,g(x)=ex.
(1)若函数φ (x) =" f" (x)-,求函数φ (x)的单调区间;
(2)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.