若某产品的直径长与标准值的差的绝对值不超过时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:
)将所得数据分组,得到如下频率分布表:
(1)将上面表格中缺少的数据填充完整;
(2)估计该厂生产的此种产品中,不合格的直径长与标准值的差落在区间内的概率
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.
设椭圆的焦点在
轴上,
分别是椭圆的左、右焦点,点
是椭圆在第一象限内的点,直线
交
轴于点
,
(1)当时,
(1)若椭圆的离心率为
,求椭圆
的方程;
(2)当点P在直线上时,求直线
与
的夹角;
(2) 当时,若总有
,猜想:当
变化时,点
是否在某定直线上,若是写出该直线方程(不必求解过程).
如图,平面平面
,四边形
为矩形,
.
为
的中点,
.
(1)求证:;
(2)若时,求二面角
的余弦值.
我国政府对PM2.5采用如下标准:
PM2.5日均值m(微克/立方米) |
空气质量等级 |
![]() |
一级 |
![]() |
二级 |
![]() |
超标 |
某市环保局从180天的市区PM2.5监测数据中,随机抽取l0天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(1)求这10天数据的中位数.
(2)从这l0天的数据中任取3天的数据,记表示空气质量达到一级的天数,求
的分布列;
(3)以这10天的PM2.5日均值来估计这180天的空气质量情况,其中大约有多少天的空气质量达到一级.
某同学用“五点法”画函数在某一个周期内的图象时,列表并填入的部分数据如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)请求出上表中的,并直接写出函数
的解析式;
(2)将的图象沿
轴向右平移
个单位得到函数
,若函数
在
(其中
)上的值域为
,且此时其图象的最高点和最低点分别为
,求
与
夹角
的大小。
已知:0<a<b<c<d 且a+d=b+c,求证:<