游客
题文

某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.


(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有
关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,
能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好
的护眼习惯,并且在这9人中任取3人,记名次在的学生人数为,求的分布列和数学期望.
附:

科目 数学   题型 解答题   难度 较难
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

平行四边形的两邻边所在直线的方程为x+y+1=0及3x-4=0,其对角线的交点是D(3,3),求另两边所在的直线的方程.

已知函数(其中为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ) 当时,设函数的3个极值点为,且.
证明:.

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;
⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

某校高三年级组为了缓解学生的学习压力,举办元宵猜灯谜活动。规定每人最多猜3道,在A区猜对一道灯谜获3元奖品;在B区猜对一道灯谜获2元奖品,如果前两次猜题后所获奖品总额超过3元即停止猜题,否则猜第三道题。假设某同学猜对A区的任意一道灯谜的概率为0.25,猜对B区的任意一道灯谜的概率为0.8,用表示该同学猜灯谜结束后所得奖品的总金额。
(1)若该同学选择先在A区猜一题,以后都在B区猜题,求随机变量的数学期望;
(2)试比较该同学选择都在B区猜题所获奖品总额超过3元与选择(1)中方式所获奖品总额超过3元的概率的大小。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号