已知定点F(3,0)和动点P(x,y),H为PF的中点,O为坐标原点,且满足.
(1)求点P的轨迹方程;
(2)过点F作直线与点P的轨迹交于A,B两点,点C(2,0).连接AC,BC与直线
分别交于点M,N.试证明:以MN为直径的圆恒过点F.
已知函数.
(Ⅰ)若为
上的单调函数,试确
定实数
的取值范围;
(Ⅱ)求函数在定义域上的极值;
(Ⅲ)设,求证:
.
已知点A(2,0),. P为
上
的动点,线段BP上的点M满足|MP|=|MA|.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点B(-2,0)的直线与轨迹C交于S、T两点,且
,求直线
的方程.
本题满分13分)
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(
为常数,且
,设该食品厂每公斤蘑菇的出厂价为
元(
),根据市场调查,销售量
与
成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.
(Ⅰ)求该工厂的每日利润元与每公斤蘑菇
的出厂价
元的函数关系式;
(Ⅱ)若,当每公斤蘑菇的出厂价
为多少元时,该工厂的利润
最大,并求最大值.
.
如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,AB
AD,AF=AB=BC=FE=
AD.
(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.
已知数列的前
项和为
,满足
.
(Ⅰ)证明:数列为等比数列,并求出
;
(Ⅱ)设,求
的最大项.