上个月,商店共卖出甲、乙两种商品1000件,这个月甲商品多卖出50%,乙商品少卖出10%,结果产品的总销量减少了4%,上个月甲、乙两种商品各卖出多少件?
在平面直角坐标系xOy中,反比例函数的图象与抛物线
交于点A(3, n). 求n的值及抛物线的解析式;
过点A作直线BC,交x轴于点B,交反比例函数
(
)的图象于点C,且AC=2AB,求B、C两点的坐标;
在(2)的条件下,若点P是抛物线对称轴上的一点,且点P到x轴和直线BC的距离相等,求点P的坐标.
如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,
以格点为顶点的图形称为格点图形. 图中的△ABC是一个格点三角形.请你在第一象限内画出格点△AB1C1, 使得△AB1C1∽△ABC,且△AB1C1与△ABC的相似比为3:1;
写出B1、C1两点的坐标.
如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆和半圆
,其中
和
分别为两个半圆的圆心. F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.
连结
,证明:
;
如图二,过点A分别作半圆
和半圆
的切线,交BD的延长线和CE的延长线于点P和点Q,连结PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;
如图三,过点A作半圆
的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA. 证明:PA是半圆
的切线.
如图一,AB是的直径,AC是弦,直线EF和
相切与点C,
,垂足为D.
求证
;
如图二,若把直线EF向上移动,使得EF与
相交于G,C两点(点C在点G的右侧),连结AC,AG,若题中其他条件不变,这时图中是否存在与
相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.
如图,为正方形
对角线AC上一点,以
为圆心,
长为半径的⊙
与
相切于点
.
求证:
与⊙
相切;
若⊙
的半径为1,求正方形
的边长.