游客
题文

如图,矩形OACB,A(0,3)、B(6,0),点E在线段OB上,∠AEO=30°,点从点Q(-4,0)出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.

(1)求点E的坐标;
(2)当∠PAE=15°时,求t的值;
(3)以点P为圆心,PA为半径的随点P的运动而变化,当与四边形AEBC的边(或边所在的直线)相切时,求t的值.

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O E CD 中点,连接 OE .过点 C CF / / BD OE 的延长线于点 F ,连接 DF

求证:(1) ΔODE ΔFCE

(2)四边形 OCFD 是矩形.

如图, AG HAF 的平分线,点 E AF 上,以 AE 为直径的 O AG 于点 D ,过点 D AH 的垂线,垂足为点 C ,交 AF 于点 B

(1)求证:直线 BC O 的切线;

(2)若 AC = 2 CD ,设 O 的半径为 r ,求 BD 的长度.

某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:

成绩分组

频数

频率

50 x < 60

8

0.16

60 x < 70

12

a

70 x < 80

0.5

80 x < 90

3

0.06

90 x 100

b

c

合计

1

(1)写出 a b c 的值;

(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;

(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.

如图,在四边形 ABCD 中, BAC = 90 ° E BC 的中点, AD / / BC AE / / DC EF CD 于点 F

(1)求证:四边形 AECD 是菱形;

(2)若 AB = 6 BC = 10 ,求 EF 的长.

如图, PA O 相切于点 A ,过点 A AB OP ,垂足为 C ,交 O 于点 B .连接 PB AO ,并延长 AO O 于点 D ,与 PB 的延长线交于点 E

(1)求证: PB O 的切线;

(2)若 OC = 3 AC = 4 ,求 sin E 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号