观察下图,每个小正方形的边长均为1,可以得到每个小正方形的面积为1.
(1)图中阴影部分的面积是多少? 阴影部分正方形的边长是多少?
(2)估计边长的值在哪两个整数之间?
(3)请你利用图形在数轴上用刻度尺和圆规表示阴影部分正方形边长所表示的数。
如图,在△ABC中,点O在AB上,以O为圆心的圆经过A,C两点,交AB于点D,已知2∠A +∠B =.
(1)求证:BC是⊙O的切线;
(2)若OA=6,BC=8,求BD的长.
如图,在△ABD和△AEC中,E为AD上一点,若∠DAC =∠B,∠AEC =∠BDA. 求证:.
已知:梯形ABCD中,AD∥BC,∠ABC=90°,BE⊥CD于点E.DP⊥CB于点P,连接AP、PE.如图1,若∠C=45°,求证:AP= AE.
如图2,若∠C=60°,直接写出线段AP、AE的数量关系.
在(1)的条件下,将线段EA绕点E顺时针旋转得到线段EA′,使∠DEA′=∠DAE,直线EA′分别与线段BA延长线、线段BC交于点N、点K,已知AD=1,EK=.求线段NE的长.
如图,平面直角坐标系中,点A(4,0),直线AB与y轴交于点B,S△AOB=6,点P从点A出发,以每秒1个单位的速度沿x轴正方向运动.
求B点坐标。
过点B作射线L∥x轴,动点Q从B出发,以每秒2个单位的速度,沿射线L运动.若动点P、Q同时运动,过点A作AC⊥AB,射线AC与射线PQ、射线L分别交于点C、K.设运动时间为t秒,线段KQ的长为y个单位.求y与t的函数关系式,并直接写出自变量t的取值范围.
在(2)的条件下,若D为BC中点.在点P、Q运动过程中是否存在t值, 以A、C、D、Q为顶点的四边形是平行四边形,若存在,求出t值;若不存在,请说明理由.
小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.
大笔记本 |
小笔记本 |
|
价格(元/本) |
a |
b |
页数(页/本) |
100 |
60 |
(1)文具店一本大笔记本与一本小笔记本的售价和为11元,用12元钱购买的大笔记本数量与用10元钱购买的小笔记本数量相同.求a、b的值.
(2)在(1)的条件下,为了节约资金,小明应购买两种笔记本各多少本?