如图,矩形 ABCD 中,BC=2,AB=1,PA丄平面 ABCD,BE∥PA,BE=PA,F 为PA的中点.
(I)求证:DF∥平面PEC
(II)记四棱锥C一PABE的体积为V1,三棱锥P﹣ACD的 体积为V2,求的值.
已知
为常数,且
,函数
,
(
=2.71828…是自然对数的底数).
(I)求实数
的值;
(II)求函数
的单调区间;
(III)当
=1时,是否同时存在实数
和
(
),使得对每一个
,直线
与曲线
都有公共点?若存在,求出最小的实数
和最大的实数
;若不存在,说明理由.
设函数
,其中,角
的顶点与坐标原点重合,始边与
轴非负半轴重合,终边经过点
,且
.
(Ⅰ)若点
的坐标为
,求
的值;
(Ⅱ)若点
为平面区域
上的一个动点,试确定角
的取值范围,并求函数
的最小值和最大值.
如图,四棱锥
中,
底面
,点
在线段
上,且
.
(Ⅰ)求证:
平面
;
(Ⅱ)若
,求四棱锥
的体积.
某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
1 |
2 |
3 |
4 |
5 |
|
0.2 |
0.45 |
(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求
、
、
的值;
(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为
,
,
,等级系数为5的2件日用品记为
,
,现从
,
,
,
,
这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
如图,直线
与抛物线
相切于点
.
(Ⅰ)求实数
的值;
(Ⅱ)求以点
为圆心,且与抛物线
的准线相切的圆的方程.