某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
品种甲 |
403 |
397 |
390 |
404 |
388 |
400 |
412 |
406 |
品种乙 |
419 |
403 |
412 |
418 |
408 |
423 |
400 |
413 |
(1)假设n=2,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
设函数
(1)当时,求函数
的定义域;
(2)若函数的定义域为R,试求
的取值范围。
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线
,过点
的直线
的参数方程为:
,(t为参数),直线
与曲线
分别交于
两点.
(1)写出曲线和直线
的普通方程;
(2)若成等比数列,求
的值.
如图,是⊙
的一条切线,切点为
,
都是⊙
的割线,已知
.
(1)证明:;
(2)证明:.
已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)证明:都有
。
某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:
,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?