已知⊙M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点.
(Ⅰ)若=
,求
及直线MQ的方程;
(Ⅱ)求证:直线AB恒过定点.
矩形中,
⊥面
,
,
上的点,且
⊥面
,
、
交于点
.
(1)求证:⊥
;
(2)求证://面
.
已知,函数
,
时,
,求常数
,
的值.
命题:关于
的不等式
,对一切
恒成立,命题
:函数
是增函数,若
为真,
为假,求实数
的取值范围.
设0≤x≤2,求函数y=的最大值和最小值.
沪杭高速公路全长千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于
千米/时且不高于
千米/时的时速匀速行驶到杭州.已知该汽车每小时的运输成本
(以元为单位)由可变部分和固定部分组成:可变部分与速度
(千米/时)的平方成正比,比例系数为
;固定部分为200元.
(1)把全程运输成本(元)表示为速度
(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?