已知椭圆+
=1(a>b>0)的离心率为
,且过点(
,
).
(1)求椭圆方程;
(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
(本小题满分14分)
已知A(1,1)是椭圆=1(
)上一点,
是椭圆的两焦点,且满足
.
(1)求椭圆的标准方程;
(2)设点是椭圆上两点,直线
的倾斜角互补,求直线
的斜率.
(本小题满分13分)
设函数.
(1)若曲线在点
处与直线
相切,求
的值;
(2)求函数的单调区
间与极值点.
(本小题满分13分)
如图,平行四边形中,
,
,且
,正方形
所在平面与平面
垂直,
分别是
的中点.
(1)求证:
;
(2)求证:平面
;
(3)求三棱锥的体积.
在等比数列{}中,
,公比
,且
,
与
的等比中项为2.
(1)求数列{}的通项公式;
(2)设,数列{
}的前
项和为
,当
最大时,求
的值。
(本小题满分13分)
如图,设是单位圆和
轴正半轴的交点,
是单位圆上的两点,
是坐标原点,
,
.
(1)若,求
的值;
(2)设函数,求
的值域.