已知椭圆+
=1(a>b>0)的离心率为
,且过点(
,
).
(1)求椭圆方程;
(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
叙述并证明余弦定理
(本小题满分14分)数列定义如下:
,
,
.
(1)求的值;
(2)求的通项;
(3)若数列定义为:
,
①证明:;②证明:
.
(本小题满分14分)已知函数.
(1)求的导数
;
(2)求证:不等式上恒成立;
(3)求的最大值.
(本小题满分13分)已知抛物线C:与直线l:
没有公共点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.
(1)证明:直线AB恒过定点Q;
(2)若点P与(1)中的定点Q的连线交抛物线C于M,N两点,证明:.
如图,已知斜三棱柱 的底面是直角三角形,
,侧棱与底面所成的角为
,点
在底面上的射影
落在
上.
(1)若点 恰为
的中点,且
,求
的值.
(2)若 ,且当
时,求二面角
的大小.