已知函数在点(﹣1,f(﹣1))的切线方程为x+y+3=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.
已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.
以下是某地搜集到的新房屋的销售价格(万元)和房屋的面积
(
)的数据 ,若由资料可知
对
呈线性相关关系。
试求:(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为时的销售价格.
参考公式:
设数列的前
项和为
,且满足
.
(1)求,
,
,
的值并写出其通项公式;(2)证明数列
是等比数列.
已知.
(1)若曲线在
处的切线与直线
平行,求a的值;
(2)当时,求
的单调区间.
如图,椭圆上的点M与椭圆右焦点
的连线
与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:;
(3)过且与AB垂直的直线交椭圆于P、Q,若
的面积是20
,求此时椭圆的方程.