甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
已知正比例函数的图象与反比例函数
(
为常数,
)的图象有一个交点的横坐标是2.
(1)求两个函数图象的交点坐标;
(2)若点,
是反比例函数
图象上的两点,且
,试比较
的大小.
如图,直线与反比例函数
的图象相交于点A(a,3),且与x轴相交于点B.
(1)求该反比例函数的表达式;
(2)若P为y轴上的点,且△AOP的面积是△AOB的面积的,请求出点P的坐标.
(3)写出直线向下平移2个单位的直线解析式,并求出这条直线与双曲线的交点坐标。
如图,反比例函数在第一象限的图象上有两点
,
,它们的横坐标分别是2,6,
求△的面积.
如图,已知直线y=kx-3经过点M,求此直线与x轴,y轴的交点坐标.
如图,直线AC∥BD,连接AB,直线AC.BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.