如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪测得旗杆顶部A的仰角,已知测角仪器的高CD=1. 5米,求旗杆AB的高.(精确到0.1米)(供选用的数据:
,
,
)
箱中装有3张相同的卡片,它们分别写有数字1,2,4;
箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从
箱、
箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:
(1)两张卡片上的数字恰好相同的概率.
(2)如果取出箱中卡片上的数字作为十位上的数字,取出
箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.
如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出的x的取值范围;
(3)求△AOB的面积.
(1)解方程:
(2)如图,△ABC各顶点的坐标分别为A(4、4),B(-2,2),C(3,0),
①画出它的以原点O为对称中心的△AˊBˊCˊ
②写出 Aˊ,Bˊ,Cˊ三点的坐标。
(3)已知关于x的方程mx2-(m+2)x+2=0(m≠0).
①求证:方程总有两个实数根;
②若方程的两个实数根都是整数,求正整数m的值.
如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.
如图,三角板ABC中,∠ACB=90°,AB=2,∠A=30°,三角板ABC绕直角顶点C顺时针旋转90°得到△A1B1C,求:
(1)的长;
(2)在这个旋转过程中三角板AC边所扫过的扇形ACA1的面积;
(3)在这个旋转过程中三角板所扫过的图形面积.