已知圆,经过椭圆
的右焦点
及上顶点
,过圆外一点
倾斜角为
的直线
交椭圆于
两点.
(1)求椭圆的方程;
(2)若右焦点在以线段CD为直径的圆
的内部,求
的取值范围.
选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,以O为极点,Ox为极轴建立极坐标系,且两种坐标系长度单位一致. 已知直线l的极坐标方程为,圆C在直角坐标系中的参数方程为
(
为参数),求直线l与圆C的公共点的个数.
(本小题满分14分)如图,在正三棱柱ABC-A1B1C1中,D、E分别为CC1、A1B1的中点.
求证:C1E∥平面A1BD;
(2)求证:平面ABB1A1⊥平面A1BD.
(本小题满分14分) 在△ABC中,a,b,c分别为内角A,B,C的对边,且
(1)求A的大小;
(2)现给出三个条件:①;②a=2;③
.请从中选择两个条件,使得确定的△ABC的面积最大.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数.
(1)用xn表示xn+1;
(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
已知椭圆上的点到椭圆右焦点
的最大距离为
,离心率
,直线
过点
与椭圆
交于
两点.
(1)求椭圆的方程;
(2)上是否存在点
,使得当
绕
转到某一位置时,有
成立?若存在,求出所有点
的坐标与
的方程;若不存在,说明理由.