已知点,点
为直线
上的一个动点.
(Ⅰ)求证:恒为锐角;
(Ⅱ)若四边形为菱形,求
的值.
2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):
月收入(百元) |
赞成人数 |
[15,25) |
8 |
[25,35) |
7 |
[35,45) |
10 |
[45,55) |
6 |
[55,65) |
2 |
[65,75) |
1 |
(I)试根据频率分布直方图估计这60人的平均月收入;
(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.
如图,矩形,满足
在
上,
在
上,且
∥
∥
,
,
,
,沿
、
将矩形
折起成为一个直三棱柱,使
与
、
与
重合后分别记为
,在直三棱柱
中,点
分别为
和
的中点.
(I)证明:∥平面
;
(Ⅱ)若二面角为直二面角,求
的值.
数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n
·bn+1(
为常数,且
≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+
+
+ +
与
Sn的大小.
已知向量,
设函数
.
求
的最小正周期与单调递增区间;
在
中,
分别是角
的对边,若
,
,求
的最大值.
在平面直角坐标系中,已知椭圆
的左焦点为
,且椭圆
的离心率
.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为
,
是椭圆
上异于
的任一点,直线
分别交
轴于点
,证明:
为定值,并求出该定值;
(3)在椭圆上,是否存在点
,使得直线
与圆
相交于不同的两点
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.