已知命题:“不等式
对任意
恒成立”,命题
:“方程
表示焦点在x轴上的椭圆”,若
为真命题,
为真,求实数
的取值范围.
在直角坐标系中,
是过定点
且倾斜角为
的直线;在极坐标系(以坐标原点
为极点,以
轴非负半轴为极轴,取相同单位长度)中,曲线
的极坐标方程为
.
(I)写出直线的参数方程;并将曲线
的方程化为直角坐标方程;
(II)若曲线与直线相交于不同的两点
,求
的取值范围.
如图所示,己知为
的
边上一点,
经过点
,交
于另一点
,
经过点
,
,交
于另一点
,
与
的另一交点为
.
(I)求证:四点共圆;
(II)若切
于
,求证:
.
己知函数.
(I)若是,
的极值点,讨论
的单调性;
(II)当时,证明:
.
设抛物线的焦点为
,准线为
,
,以
为圆心的圆
与
相切于点
,
的纵坐标为
,
是圆
与
轴除
外的另一个交点.
(I)求抛物线与圆
的方程;
( II)已知直线,
与
交于
两点,
与
交于点
,且
, 求
的面积.
如图,在直三棱柱中,D、E分别为
、AD的中点,F为
上的点,且
(I)证明:EF∥平面ABC;
(Ⅱ)若,
,求二面角
的大小.