已知椭圆G的离心率为
,其短轴的两个端点分别为A(0,1),B(0,-1).
(Ⅰ)求椭圆G的方程;
(Ⅱ)若
是椭圆
上关于
轴对称的两个不同点,直线
与
轴分别交于点
.判断以
为直径的圆是否过点
,并说明理由.
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有
名学生被考官L面试,求
的分布列和数学期望.
若
的图像与直线
相切,并且切点横坐标依次成公差为
的等差数列.
(1)求
和
的值;
(2)
ABC中a、b、c分别是∠A、∠B、∠C的对边.若
是函数
图象的一个对称中心,且a=4,求
ABC面积的最大值.
已知
且
,若
恒成立,
(1)求
的最小值;(2)若
对任意的
恒成立,求实数
的取值范围.
在直角坐标系
中,直线
的方程为
,曲线
的参数方程为
.
(1)已知在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为
,判断点
与直线
的位置关系;
(2)设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
已知矩阵
.
(1) 求
的逆矩阵
;
(2)求矩阵
的特征值
、
和对应的特征向量
、
.