某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.
A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频率分布表
满意度评分分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
2 |
8 |
14 |
10 |
6 |
(Ⅰ)作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)
B地区用户满意度评分的频率分布直方图
(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
满意度评分 |
低于70分 |
70分到89分 |
不低于90分 |
满意度等级 |
不满意 |
满意 |
非常满意 |
估计那个地区的用户的满意度等级为不满意的概率大,说明理由.
设函数是定义域为R的奇函数.
(1)求的值;
(2)若,试判断函数单调性(不需证明)并求不等式
的解集;
(3)若上的最小值为
,求
的值.
如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=(
>2),BC=2,且AE=AH=CF=CG,
设AE=,绿地面积为
.
(1)写出关于
的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?
已知二次函数的图象过点(1,13),
且函数是偶函数.
(1)求的解析式;
(2)已知,
,求函数
在[
,2]上的最大值和最小值.
已知函数是奇函数,且
.
(1) 求的表达式;(2) 设
;
记,求S的值.
已知函数的定义域为集合
,
.
(1)若,求实数a的取值范围;
(2)若全集,a=
,求
及
.