设函数(其中
).
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)当时,求函数
在
上的最大值
.
(本小题满分14分)已知
是正数组成的数列,
,且点(
)(n
N*)在
函数
的图象上.(Ⅰ)求数列
的通项公式;
(Ⅱ)若
数列
满足
,
,求数列
的通项公式.
(本题15分)如图,椭圆长轴端点为
,
为椭圆中心,
为椭圆的右焦点,且
,
.(1)求椭圆的标准方程;(2)记椭圆的上顶点为
,
直线
交椭圆于
两点,问:是否存在直线
,使点
恰为
的垂心?若存在,求出
直线
的方程;若不存在,请说明理由.
(本题14分)如图,五面体
中
,
.底面
是正三角形,
.
四边形
是矩形
,
二面角
为直二面角.
(1)在
上运动,当
在何处时,有
∥平面
,并且
说明理由;
(2)当
∥平面
时,求二面角
的
余弦值.
(本小题满分14分)设向量,向量
,
.(1)若向量
,求
的值;(2)求
的最大值及此时
的值.
如图,多面体的直观图及三视图如图所示,
分别为
的中点.
(1)求证:平面
;
(2)求多面体的体积;
(3)求证:.