设函数(其中
).
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)当时,求函数
在
上的最大值
.
(本小题满分12分)已知数列是等比数列,首项
,公比
,其前
项和为
,且
,
,
成等差数列.
(1)求数列的通项公式;
(2)若数列满足
,
为数列
的前
项和,若
恒成立,求
的最大值.
(本小题满分12分)某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任意4位申请人中:
(1)恰有2人申请片区房源的概率;
(2)申请的房源所在片区的个数的分布列和期望.
(本小题满分12分)如图,在多面体中,底面
是边长为
的的菱形,
,四边形
是矩形,平面
平面
,
,
和
分别是
和
的中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的大小.
(本小题满分12分)已知的三个内角
所对的边分别为
,向量
,
,且
.
(1)求角A的大小;
(2)若,求
(本小题满分14分)已知椭圆:
与抛物线
:
有相同焦点
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线过椭圆
的另一焦点
,且与抛物线
相切于第一象限的点
,设平行
的直线
交椭圆
于
两点,当△
面积最大时,求直线
的方程.