已知函数.
(1)求的最小正周期和最大值;
(2)讨论在
上的单调性.
(12分)设函数(1)求函数
的单调区间;
函数。
(1)求的周期;
(2)若,
,求
的值。
.(本小题满分12分)
已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于AF(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC。
求证:(1)
(2)AC2=AE·AF。
.(本小题满分12分)
已知椭圆与双曲线
有共同的焦点F1、F2,设它们在第一象限的交点为P,且
(1)求椭圆的方程;
(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为的直线
,与椭圆交于不同的两点A、B,点Q满足
?若存在,求出
的取值范围;若不存在,说明理由。
(本小题满分12分)
设函数
(I)若函数处的切线为直线
相切,求a的值;
(II)当时,求函数
的单调区间。