.(本小题满分12分)
已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于AF(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC。
求证:(1)
(2)AC2=AE·AF。
已知二次函数的图象过点
,其导函数为
,数列
的前项和为
,点
在函数
的图象上
.
(Ⅰ)求函数的解析式;
(Ⅱ)求数列的通项公式;
(Ⅲ)设,求数列
的前
项和
.
已知多面体中,
平面
,
,
,
,
为
的中点
(Ⅰ)求证: 平面
.
(Ⅱ)求直线与平面
所成角的大小.
甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、…、
的个黑球,从甲、乙两盒中各抽取一个小球,抽到标号为1号红球和
号黑球的概率为
.
(Ⅰ)求的值;
(Ⅱ)现从甲乙两盒各随机抽取1个小球,抽得红球的得分为其标号数;抽得黑球,若标号数为奇数,则得分为1,若标号数为偶数,则得分为0.求得分为2的概率.
在中,角
所对的边分别为
.向量
,
.已知
,
.
(Ⅰ)求的大小;
(Ⅱ)判断的形状并证明.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若当时,不等式
恒成立,求实数
的取值范围.