.(本小题满分12分)
已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于AF(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连结AC。
求证:(1)
(2)AC2=AE·AF。
在平面直角坐标系O
中,直线
与抛物线
=2
相交于A、B两点。
(1)求证:命题“如果直线过点T(3,0),那么
=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段
中点
的轨迹方程;
(3)过原点的直线交椭圆于点
,求
面积的最大值。
已知直线l经过点(0,-2),其倾斜角是60°.
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.
求直线被圆
所截得的弦长.
已知为实数,
(1)若,求
在
上最大值和最小值;
(2)若在
和
上都是递增的,求
的取值范围。