游客
题文

已知:y-1与x+2成正比例,且x=1时,y=4.
(1)写出之间的函数关系式;
(2)在图中画出此函数的图像;
(3) 求此直线与坐标轴围成的三角形的面积.
(4)观察图像,直接写出的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

计算: ( - 3 ) 2 + 2 × ( 2 - 1 ) - | - 2 2 |

已知直线 y = kx - 2 与抛物线 y = x 2 - bx + c ( b c 为常数, b > 0 ) 的一个交点为 A ( - 1 , 0 ) ,点 M ( m , 0 ) x 轴正半轴上的动点.

(1)当直线 y = kx - 2 与抛物线 y = x 2 - bx + c ( b c 为常数, b > 0 ) 的另一个交点为该抛物线的顶点 E 时,求 k b c 的值及抛物线顶点 E 的坐标;

(2)在(1)的条件下,设该抛物线与 y 轴的交点为 C ,若点 Q 在抛物线上,且点 Q 的横坐标为 b ,当 S ΔEQM = 1 2 S ΔACE 时,求 m 的值;

(3)点 D 在抛物线上,且点 D 的横坐标为 b + 1 2 ,当 2 AM + 2 DM 的最小值为 27 2 4 时,求 b 的值.

问题背景:如图1,在四边形 ABCD 中, BAD = 90 ° BCD = 90 ° BA = BC ABC = 120 ° MBN = 60 ° MBN B 点旋转,它的两边分别交 AD DC E F .探究图中线段 AE CF EF 之间的数量关系.

小李同学探究此问题的方法是:延长 FC G ,使 CG = AE ,连接 BG ,先证明 ΔBCG ΔBAE ,再证明 ΔBFG ΔBFE ,可得出结论,他的结论就是    

探究延伸1:如图2,在四边形 ABCD 中, BAD = 90 ° BCD = 90 ° BA = BC ABC = 2 MBN MBN B 点旋转.它的两边分别交 AD DC E F ,上述结论是否仍然成立?请直接写出结论(直接写出"成立"或者"不成立" ) ,不要说明理由;

探究延伸2:如图3,在四边形 ABCD 中, BA = BC BAD + BCD = 180 ° ABC = 2 MBN MBN B 点旋转.它的两边分别交 AD DC E F .上述结论是否仍然成立?并说明理由;

实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心 ( O 处)北偏西 30 ° A 处.舰艇乙在指挥中心南偏东 70 ° B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里 / 小时的速度前进,同时舰艇乙沿北偏东 50 ° 的方向以100海里 / 小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达 E F 处.且指挥中心观测两舰艇视线之间的夹角为 70 ° .试求此时两舰艇之间的距离.

如图, AB O 的直径, AC O 的切线, BC O 于点 E

(1)若 D AC 的中点,证明: DE O 的切线;

(2)若 CA = 6 CE = 3 . 6 ,求 O 的半径 OA 的长.

某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.

(1)求口罩日产量的月平均增长率;

(2)按照这个增长率,预计4月份平均日产量为多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号