某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球,乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球. 若摸中甲箱中的红球,则可获奖金元,若摸中乙箱中的红球,则可获奖金
元. 活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.
(1)如果参与者先在乙箱中摸球,求其恰好获得奖金元的概率;
(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.
(本小题满分14分)已知向量=(
,1),向量
=(sin2x,cos2x),函数
(1)求函数的表达式,并作出函数
在一个周期内的简图(用五点法列表描点);
(2)求函数的周期,并写单调区间.
已知函数,
(1)证明为奇函数,并在
上为增函数;
(2)若关于的不等式
在
上恒成立,求实数
的取值范围
(3)设,当
时,
,求
的最大值
设数列的前
项和为
(1)若数列是首项为1,公比为2的等比数列,求常数
的值,使
对一切大于零的自然数
都成立
(2)若数列是首项为
,公差
的等差数列,证明:存在常数
使得
对一切大于零的自然数
都成立,且
(3)若数列满足
,
,
(
)为常数,且
,证明:当
时,数列
为等差数列
为迎接省运会在我市召开,美化城市,在某主干道上布置系列大型花盆,该圆形花盆直径2米,内部划分为不同区域种植不同花草 如图所示,在蝶形区域内种植百日红,该蝶形区域由四个对称的全等三角形组成,其中一个三角形的顶点
为圆心,
在圆周上,
在半径
上,设计要求
(1)请设置一个变量,写出该蝶形区域的面积
关于
的函数表达式;
(2)为多少时,该蝶形区域面积
最大?
设椭圆的左焦点为
,短轴上端点为
,连接
并延长交椭圆于点
,连接
并延长交椭圆于点
,过
三点的圆的圆心为
(1)若的坐标为
,求椭圆方程和圆
的方程;
(2)若为圆
的切线,求椭圆的离心率