如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点
(1)求证:四边形EFGH为正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积。
甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率。
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;
(2)随机选取2名同学,其中有乙同学.
某中学七年级学生共450人,其中男生250人,女生200人。该校对七年级所有学生进行了一次体育测试,并随即抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:
成绩 |
划记 |
频数 |
百分比 |
不及格 |
![]() |
9 |
10% |
及格 |
![]() |
18 |
20% |
良好 |
![]() |
36 |
40% |
优秀 |
![]() |
27 |
30% |
合计 |
90 |
90 |
100% |
(1)请解释“随即抽取了50名男生和40名女生”的合理性;
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;
(3)估计该校七年级学生体育测试成绩不合格的人数。
如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BEAC,与BD的垂线DE交于点E,
(1)求证:△ABC≌△BDE
(2)三角形BDE可由三角形ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法)
如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3
表示正方形ABCD的面积S.