已知:Rt△ABC≌Rt△ADE, ∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.
(1)请找出图中其他的全等三角形;
(2)求证:CD=EB;
(3)求证:CF=EF.
为了改善市民的生活环境,我是在某河滨空地处修建一个如图所示的休闲文化广场.在Rt△ABC内修建矩形水池DEFG,使顶点D、E在斜边AB上,F、G分别在直角边BC、AC上;又分别以AB、BC、AC为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中米,∠BAC=600.设EF=x米,DE=y米.
(1)求y与x之间的函数解析式;
(2)当x为何值时,矩形DEFG的面积最大?最大面积是多少?
(3)求两弯新月(图中阴影部分)的面积,并求当x为何值时,矩形DEFG的面积等于两弯新月面积的?
如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至,旋转角为
.
(1)当点恰好落在EF边上时,求旋转角
的值;
(2)如图2,G为BC的中点,且00<<900,求证:
;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,与
能否全等?若能,直接写出旋转角
的值;若不能,说明理由.
随着我国汽车产业的发展,城市道路拥堵问题日益严峻.某部门对15个城市的交通状况进行了调查,得到的数据如下表所示:
项目 |
北京 |
太原 |
杭州 |
沈阳 |
广州 |
深圳 |
上海 |
桂林 |
南通 |
海口 |
南京 |
温州 |
威海 |
兰州 |
中山 |
上班花费时间(分钟) |
52 |
33 |
34 |
34 |
48 |
46 |
47 |
23 |
24 |
24 |
37 |
25 |
24 |
25 |
18 |
上班堵车时间(分钟) |
14 |
12 |
12 |
12 |
12 |
11 |
11 |
7 |
7 |
6 |
6 |
5 |
5 |
5 |
0 |
(1)根据上班花费时间,将下面的频数分布直方图补充完整;
(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);
(3)规定:,比如:
;
.某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.
为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的分三个档次计费,具体规定见下图.小明统计了自己2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.
(1)若小明家计划2013年全年的用电量不超过2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)
(2)若小明家2013年6月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?
如图,四边形ABCD是平行四边形,以对角线BD为直径作⊙O,分别于BC、AD相交于点E、F.
(1)求证四边形BEDF为矩形.
(2)若BD2=BE·BC,试判断直线CD与⊙O的位置关系,并说明理由.