选修4-4:极坐标与参数方程
在极坐标系中,直线
的极坐标方程为
,
是
上任意一点,点
在射线
上,且满足
,记点
的轨迹为
.
(1)求曲线的极坐标方程;
(2)求曲线上的点到直线
的距离的最大值.
17
设
是由正数组成的数列,其前n项和为
,且满足关系:
(1)求数列
的通项公式;
(2)求
16
已知向量
,
,其中
,函数
(1)求函数
的最小正周期;
(2)确定函数
的单调区间;
(3)函数
的图象可以由函数
的图象经过怎样的变化而得到?
在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,—2),点C满足,其中
,且
,
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线(a>0,b>0)相交于M、N两点,且以MN为直径的圆经过原点,求证:
为定值;
(3)在(2)的条件下,若双曲线的离心率不大于,求双曲线实轴长的取值范围。
(1)将写成
的形式,并求其图象对称中心的横坐标;
(2)如果△ABC的三边、
、
满足
,且边
所对的角为
,试求角
的范围及此时函数
的值域
椭圆的离心率为点
在
轴上,
,且
、
、
三点确定的圆
恰好与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)过作一条与两坐标轴都不垂直的直线
交椭圆于
、
两点,在
轴上是否存在定点
,使得
恰好为△
的内角平分线,若存在,求出点
的坐标,若不存在,请说明理由.